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Whispering gallery mode optical resonators have attracted attention due to their simplicity and applicability for
sensing. In this paper, analytical formulas are provided that describe resonance conditions in optical resonators.
Basic terms (resonance wavelengths and frequencies, free spectral range, Q-factor, summation principle of Q-
factors of various processes, finesse, etc.) are introduced. A description of interference of an infinite number of
waves of progressively smaller amplitudes and equal phase differences is given. A description of a Fabry–Perot res-
onator with nonequal reflection coefficients is also given as well as analysis of all-pass and add-drop optical filters.
The presented description of resonators will help to analyze the effects of optical resonators, interpret the results of
experiments, and guide the development of novel applications of microresonators. © 2021 Optical Society of America

under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/JOSAB.419993

1. INTRODUCTION

Optical whispering gallery mode resonators (WGMRs) [1] are
optical structures that confine light due to total internal reflec-
tion. Their properties have attracted significant attention in
the last decade [2,3]. Different WGMRs allow the application
of variable experimental conditions to change their internal
properties [4,5]. Most studied WGMRs 3D structures are balls
[6], toroids [7], and 2D structures, i.e., rings [8]. The light
is introduced in these structures most often by a prism [9] or
tapered fiber coupling [10]. These resonators are outstanding
because they form optical resonances with high Q-factors up to
107
− 1010 [11,12]. When the external environment, e.g., tem-

perature [13], humidity [14], or refractive index [15], changes,
the resonances shift; therefore, WGMRs are usable as sensors to
monitor these changes [16]. In biosensing, WGMRs are used
as units where tested molecules stick to their surface [17,18].
Another significant aspect of WGMRs is a high density of light
confined in these structures, thus forming conditions for studies
of nonlinear optical effects [19]. For example, whispering gallery
mode frequency combs [20] are formed through such effects.

While most of the studies in this field are concentrated on the
particular peculiarities and application issues of WGMR, there
is a lack of a detailed description of the theoretical aspects of
these resonators. In this paper, we provide the advanced classical
analytical description of optical resonances with mentioning
only some results obtained via Maxwell’s equations (ME)
[21,22]. This gives space to accent physical processes operated
in resonators, e.g., interference of waves, and not to dive into

ME formalism, which gives more precise results of resonances
but is ambiguous and practically usable only in some general
resonator geometries, e.g., balls and cylinders. Formulas pro-
vided here give a basic level of deep understanding of resonances
of optical resonators, including WGMR and Fabry–Perot
resonators. Finite element simulations of WGMRs and light
propagation in them can be made, for example, in COMSOL
Multiphysics software and can be used as a supplementary
material to analytical theory [23–26].

This paper contains the description of the main parame-
ters of optical resonances such as resonance wavelengths and
frequencies, free spectral range, Q-factor, summation principle
of Q-factors of various processes, finesse, etc. The intensity dis-
tribution of resonance spectra is derived from the interference
of an infinite number of waves of smaller amplitudes and equal
phase differences. Resonances of Fabry–Perot resonators with
different and equal reflection coefficients of their mirrors are
described. Their similarity to resonances of whispering gallery
mode resonators with single and two waveguides coupling is
presented. Provided formulas with underlying proofs form a
concept system for an in-depth understanding of the formation
of optical resonances.

2. BASIC ANALYTICAL FORMULAS FOR
RESONATOR DESCRIPTION

Optical resonances observed in WGMR can be described by
wavelength positions λi and widths1λi or frequency positions
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νi and widths1νi . The whole spectra can be expressed as I (λ)
or I (ν).

A. Wavelength in Media

Resonance frequency νi is the same across various media.
However, a resonance wavelength inside the resonator λmat

differs from the wavelength in vacuumλvac as

λmat =
λvac

n
, (1)

where n is a refractive index of media where light propagates.
Further, we will describe resonances as wavelengths in vacuum
λ= λvac.

B. Resonance Positions

A resonance condition appears when light interferes positively.
If two waves have phases φ1 and φ2, respectively, the resonance
condition is

e iφ2 = e iφ1 , (2)

and more specifically,

φ2 − φ1 =±2πm, (3)

where m is a whole number. Generally, for monochromatic wave
φ =ωt − kx +1φ, where ω is frequency, t is time, k is the
wavenumber, x is the propagation axis, and1φ is a phase shift
introduced, for example, by the reflection of a wave. If wave 2
is originated from wave 1, both waves have the same frequency
ω; further, when no additional phase shift is obtained due to
reflections, and the position difference in the x axis is L , then
φ2 − φ1 =−kL , where k = 2πn/λm , n is a refractive index
of the media of a wave propagation, and λm is a wavelength. As
wavelength and path length L are positive, Eq. (3) turns into

λm = nL ·
1

m
. (4)

The same equation can be obtained by stating that a resonance
condition is formed when the length L of the light path loop in
an optical structure with the refractive index n is equal to posi-
tive natural number m of wavelengthλm in this media.

The corresponding resonance frequency for index m is

νm =
c

nL
·m. (5)

The maximal resonance wavelength is equal to light path L
multiplied by a refractive index (when m = 1):

(λm)max = L · n. (6)

The minimal resonance frequency is

(νm)min =
c

nL
. (7)

If path L is a circle with a radius a , then resonance conditions are

λm = 2πan ·
1

m
, (8)

νm =
c

2πan
·m. (9)

In the first approximation, for circular or spherical whispering
gallery mode resonators, a is equal to the radius ro of a circle
or a sphere. In an advanced approximation, a is smaller than
the radius of the sphere by the fraction of a wavelength as the
light travels inside the resonator, and the resonance condition
differs slightly for TE and TM modes. For example, for spherical
resonators, their resonance positions derived from Maxwell’s
equations [27,28] are

νm =
c

2πr0n
·


m + 1

2 + 2−1/3α(mr )
(
m + 1

2

)1/3

−
P

(n2
r−1)

1/2 +
3
10 2−2/3α2(mr )

(
m + 1

2

)−1/3

−2−1/3 P
(
n2

r −
2
3 P 2

) α(mr )
(

m+ 1
2

)−2/3

(n2
r−1)

3/2

 ,
(10)

where effective refractive index nr = n/n2, n2 is the refractive
index of the media surrounding the resonator, P = nr in TE
mode and P = 1/nr in TM mode, α(mr ) is the position of the
mr th root of the Airy function Ai(−α), and mr is the radial
mode number.

For the first radial TE mode, mr = 1 and α(1)= 2.33811.
When m� 1 and the resonator is surrounded by air n2 = 1, the
resonance position in Eq. (10) turns into [1]

νm =
c

2πr0n
·

(
m + 1.856m1/3

+
1

2
−

n
√

n2 − 1

)
. (11)

For typical microresonators and experimental conditions
r0 ≈ 0.5 mm, n ≈ 1.45 (fused silica), and λm ≈ 780 nm.
From Eq. (9), we obtain m ≈ 6040, assuming a = r0.
Correspondingly, Eq. (11) gives m ≈ 6007. This means that
the correction of resonance positions derived from Maxwell’s
equation gives the shift of resonances by about 33 modes com-
pared with Eq. (9) when a is used as a radius of the resonator.
Equation (9) can also be used in advanced models of resonances.
Then, to keep the simplicity of the resonance condition, typi-
cally advanced corrections are hidden inside the parameter of
effective radius a , which is nontrivial to derive, and the effec-
tive refractive index n in the simplest case is nr , as described in
Eq. (10).

In the case when refractive index n is nonhomogenous in a
media, the resonance condition in Eq. (4) turns into

λm =
1

m

∮
L

nL dL, (12)

where nL is a refractive index within a specific step d L .
Evanescent interaction of waves can be hidden in nL .

C. Free Spectral Range

The distance between the two closest resonances is called the
“free spectra range” (FSR).

For wavelength scale, the FSR is

FSR (λm)= λm+1 − λm =−
λ2

m

(nL + λm)
≈−

λ2
m

nL
, (13)

which means that peaks are not equidistant. We assumed that
nL� λm , which is valid for large resonators.
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In frequency scale, the FSR is

FSR (νm)= νm+1 − νm =
c

nL
, (14)

which means equidistant resonances.

D. Quality Factor

Quality factor of the resonator system is defined as [29,30]

Q = 2π
stored energy

energy loss per oscillation period
. (15)

Stored energy in the resonator is proportional to the light inten-
sity I0 in the resonator. Due to energy dissipation, which is
characterized by the decay time τ , the light intensity I in the
resonator decays in time t according to

I = I0e−t/τ . (16)

After one oscillation period T = 1/ν, the intensity turns into

I = I0e−T/τ
= I0e−1/(τν). (17)

Correspondingly, Eq. (15) becomes

Q = 2π
1

1− e−1/(τν)
. (18)

Assuming the decay to be slow so that 1/(τν)� 1, Eq. (18)
turns into

Q = 2πντ = τω, (19)

which is an alternative definition of Q-factor. Lifetime τ of a
resonator can be measured experimentally [12], thus deriving
the Q-factor of the resonator system.

Let us analyze the case when the amplitude U(t) of the optical
signal oscillates in time t with an angular frequency ωo . It is
related to its intensity as I (t)∼U(t)2. When the intensity I (t)
of the optical signal decays according to Eq. (16), we obtain
U(t)=U0e−

t
2τ e iω0t , where U0 is a coefficient. By taking the

Fourier transform, we obtain

U(ω)=
1

2π

∫
+∞

0
U(t)e−iωt dt

=
U0

2π i

1
2τ − i (ω−ω0)(
1

2τ

)2
+ (ω−ω0)

2
. (20)

Now the light intensity I (ω) in an angular frequency scale
becomes

I (w)∼U(ω)2 ∼
1(

1
2τ

)2
+ (ω−ω0)

2
. (21)

The maximal signal appears whenω=ω0. The full width of the
signal I (ω) at half maximum (FWHM) appears to be

1ω=
1

τ
. (22)

In a frequency and wavelength scale, the FWHM becomes

1ν =
1

2πτ
, (23)

1λ=
λ2

2πcτ
. (24)

According to Eqs. (19), (22), (23), and (24), the Q-factor can be
expressed as

Q =
ω

1ω
=

ν

1ν
=

λ

1λ
. (25)

The exponential behavior of the decay of light intensity in
the resonator, as expressed in Eq. (16), can be derived from
processes that initiate the loss d I of the intensity I , which is
proportional to the value of this intensity and time interval dt
as d I ∼−I dt . In the case of many decay factors described by
decay rates a1, a2, a3, . . ., the intensity loss is described as

d I =−a1 I dt − a2 I dt − a3 I dt − . . .

=−I (a1 + a2 + a3 + . . .) dt . (26)

After integration, we obtain

I = I0e−(a1+a2+a3+...)t , (27)

where I0 is the intensity of the signal at t = 0. Based on Eqs. (16)
and (19), each decay factor ai can be described by 1/Qi = ai/ω,
where i is the index of the factor. Thus,

I = I0e−(1/Q1+1/Q2+1/Q3+...)ωt
= I0e−(1/Q)ωt . (28)

And

1

Q
=

1

Q1
+

1

Q2
+

1

Q3
+ . . . (29)

This shows that the total Q-factor Q of the system can be
expanded by various sub-Q-factors Qi initiated by various
decay processes [12].

E. Finesse

Finesse F describes the resonator and is defined as the FSR
divided by the full width of resonance at the half maximum
(FWHM):

F =
FSR

(FWHM)
. (30)

Taking into account Eqs. (14), (19), and (23), we obtain

F =
c

nL1ν
=

2πτ c
nL
=

Qc
nLν

(31)

and

Q =F
nLν

c
=F

L
(λ/n)

. (32)

Here, we see that the Q-factor is equal to the finesse when
light path loop length L equals the wavelength in the optical
structure. If the resonance is formed by several wavelengths in
the light path loop length, then the Q-factor is larger than the
finesse.
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For the resonance condition in Eq. (4), Eq. (32) turns into

Q =Fm, (33)

where m is the number of wavelengths within the light path
loop L .

F. Intensity Distribution of a Resonance Spectra

Let us examine the interference of an infinite number of waves of
progressively smaller amplitudes Ui and equal phase differences
[29], where i is the index of the wave changing from 1 to infinity.
The first wave has the intensity I0 and an amplitude U1 =

√
I0.

The next wave is smaller by the factor of h = |h|e iφ , |h|< 1,
compared with the previous wave, and incorporates the decay
of the amplitude and a phase shift φ. Thus, a series of waves is
formed:

U1,U2 = hU1,U3 = hU2 = h2U1, . . . (34)

The summary field amplitude is

U =U1 +U2 +U3 + . . .

=U1
(
1+ h + h2

+ h3
+ ...

)
=U1

∞∑
k=0

hk

=
U1

1− h
=

√
I0

1− |h|e iφ
. (35)

The total intensity is

I = |U |2 =
I0

|1− |h|e iφ|2
=

I0

1+ |h|2 − 2|h| cos φ
. (36)

This formula can be rewritten in a form that better describes its
resonance behavior

I =
I0

(1− |h|)2 + 4|h| sin2 (φ/2)
. (37)

The maximal and minimal values of the intensity are

Imax =
I0

(1− |h|)2
, (38)

Imin =
I0

(1+ |h|)2
. (39)

The intensity in Eq. (37) can be rewritten as

I =
Imax

1+ ((2
√
|h|)/1− |h|)

2
sin2 (φ/2)

. (40)

The resonance depth Ires is

Ires = Imax − Imin =
4|h|I0

(1− |h|2)2
, (41)

and can be characterized by coefficients K1 and K2:

Ires = K1 · Imax = K2 · I0, (42)

K1 =
4|h|

(1+ |h|)2
, (43)

K2 =
4|h|(

1− |h|2
)2 . (44)

According to Eq. (40), the resonance FWHM in a phase
scaleφ is

1φ = 4arcsin
1− |h|

2
√
|h|

. (45)

For the WGMR case,φ is a phase shift that is experienced by the
light, when it travels light path loop distance L in a media with
refractive index n:

φ = k · L =
2πn
λ
· L =

2πnL
c
· ν. (46)

Then,

I =
I0

(1− |h|)2 + 4|h| sin2
(
πnL
λ

) . (47)

In frequency scale,

I =
I0

(1− |h|)2 + 4|h| sin2
(
πnL

c ν
) . (48)

If we assume |h| to be fixed and ν to be variable, then the
maximal value of intensity is achieved when sin(πnL

c ν)= 0,
thus giving the resonance condition

πnL
c
νm = πm, (49)

where m is a positive natural number as νm > 0. Resonance con-
dition

νm =
c

nL
·m (50)

is equal to Eq. (5) as expected.
Full width at half maximum1ν of the intensity in Eq. (48) is

obtained from equation

(1− |h|)2 = 4|h| sin2 (πnL (νm +1ν/2) /c ) . (51)

Taking into account the identity in Eq. (49), we obtain

1ν =
2c
πnL

arcsin
1− |h|

2
√
|h|

. (52)

If we make a similar procedure for Eq. (47), then

(1− |h|)2 = 4|h| sin2

(
πnL

λm +1λ/2

)
, (53)

πnL
λm
= πm, (54)

πnL
λm +1λ/2

= arcsin
1− |h|

2
√
|h|
+ πm, (55)

1λ=
2λmarcsin 1−|h|

2
√
|h|

arcsin 1−|h|
2
√
|h|
+ πm

(56)
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≈
2λ2

m

πnL
arcsin

1− |h|

2
√
|h|

(57)

≈
2λ2

πnL
arcsin

1− |h|

2
√
|h|

, (58)

for cases when m� 1 as |arcsin(x )| ≤ π/2 for all values of
parameter x .

Thus, Q-factor is obtained as

Q =
πnLν

2c
arcsin−1 1− |h|

2
√
|h|

. (59)

Equation (48) shows the same maximal intensities for each of
the resonances if decay rates |h| are the same for all frequencies.
If |h| depends on ν, then resonances with various intensities can
be obtained.
|h| can be expressed as

|h| = e−β = e−t0/(2τ) = e−nL/(2cτ)
= e−πnLν/(c Q), (60)

where t0 is time for the signal to travel one loop with path dis-
tance L , and τ is the decay rate of the intensity as given by Eq.
(16). Thus, Eq. (48) turns into

I =
I0(

1− e−
nL
2cτ

)2
+ 4e−

nL
2cτ sin2

(
πnL

c ν
) (61)

=
I0(

1− e−
πnLν

c Q

)2
+ 4e−

πnLν
c Q sin2

(
πnL

c ν
) . (62)

For slow decay (1− |h|)� 1, |h| ≈ 1− t0/(2τ)=
1− nL/(2cτ), and the resonance width in Eqs. (52) and
(58) and the Q-factor in Eq. (59) can be approximated as

1ν ≈
c

πnL
1− |h|
√
|h|
≈

c
πnL

(1− |h|)≈
1

2πτ
, (63)

1λ≈
λ2

πnL
1− |h|
√
|h|
≈

λ2

πnL
(1− |h|)≈

λ2

2πcτ
, (64)

Q ≈
πnLν

c

√
|h|

1− |h|
≈ 2πτν, (65)

as expected from Eqs. (23), (24), and (19).
For slow decay, Eqs. (61) and (62) turn into

I ≈
I0(

nL
2cτ

)2
+ 4 sin2

(
πnL

c ν
) (66)

≈
I0(

πnLν
c Q

)2
+ 4 sin2

(
πnL

c ν
) . (67)

When searched now for resonance width at half maximum1ν

close to resonance, we obtain ν/Q ≈1ν, which is equal to
Eq. (25).

By combining Eqs. (30), (14), and (63), we obtain

F ≈
π
√
|h|

1− |h|
≈

π

1− |h|
≈

2πcτ
nL

. (68)

Now Eq. (47) can be rewritten as

I =
Imax

1+ (2F/π)2 sin2
(
πnL

c ν
) , (69)

Imax =
I0

(1− |h|)2
. (70)

The intensity in Eq. (69) takes the maximum value Imax

when sin2(πnLν/c )= 0 and minimal value Imin when
sin2(πnLν/c )= 1. Thus,

Imin =
Imax

1+ (2F/π)2
. (71)

The resonance depth becomes

Ires = Imax − Imin = K1 · Imax = K2 · I0, (72)

K1 =
1

1+ (π/(2F))2
, (73)

K2 =
1

(1− |h|)2
·

1

1+ (π/(2F))2
, (74)

Ires =
I0

(1− |h|)2
·

1

1+ (π/(2F))2
. (75)

For slow decay (|h| ≈ 1), according to Eq. (68), the finesse
becomesF� 1 and

K1 ≈ 1− (π/(2F))2 ≈ 1, (76)

K2 ≈ (F/π)2
1

1+ (π/(2F))2
≈ (F/π)2. (77)

It should be noted that, according to Eq. (70), Imax can reach
infinity if there is no decay (|h| = 1). In this case, equations
describe a situation when an infinite number of identical light
fields are summarized; therefore, infinite summary intensity is a
logical conclusion.

Close to resonance described by φres [see Eq. (46)] or νres, the
intensity distribution in Eq. (69) becomes Lorentzian:

I =
Imax

1+ (F/π)2(φ − φres)
2 (78)

=
Imax

1+ (2nLF/c )2(ν − νres)
2 . (79)

G. Resonance Shift

The advantage of optical resonators is ease of use for sensing
applications [16]. The most used mechanism that realizes the
sensing process is the shift of resonance positions when the exter-
nal environment, e.g., temperature, changes. This is realized by
the expansion of the resonator and the change of its refractive
index, as resonance positions depend on the light path length
and refractive index [see Eq. (4)].
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Thermal expansion of materials is described by the coefficient
of thermal expansion α0. For material with length L , the expan-
sion d L for the temperature change dT is described as

d L
dT
= α0 · L . (80)

The change of refractive index by a temperature is described by
the thermo-optical effect and corresponding thermo-optical
coefficientβ0 of a material:

dn
dT
= β0 · n. (81)

When both of these effects appear, then the resonance peak λm

described by Eq. (4) shifts as

dλm

dT
=

(
dn
dT

L + n
d L
dT

)
·

1

m
= (α0 + β0) nL ·

1

m
, (82)

dλm

dT
= λm (α0 + β0) , (83)

and in frequency scale

dνm

dT
=−νm (α0 + β0) . (84)

For fused silica, α0 = 0.55 · 10−6 1/K [31] and β0 =

11.3 · 10−6 1/K [32], thus showing that the thermo-optical
effect is the main contributor to a resonance shift. Other effects
may cause the shift of frequencies, for example, when additional
substance appears in the path of light and when the volume of
the media increases due to external humidity as in the case of
glycerol [14]. The effect of the resonance shift due to changes in
the environment allows us to use resonators as sensors.

3. ADVANCED ANALYTICAL FORMULAS FOR
RESONANCE DESCRIPTION

A. Fabry–Perot Resonator

The Fabry–Perot resonator is an optical system with two parallel
semitransparent mirrors placed at a distance d = L/2. Laser
light is irradiated on one of the mirrors, and transmitted light of
the whole system is measured [33,34]. There are two main types
of Fabry–Perot resonators, i.e., bulk glass with parallel surfaces
that are covered with reflection coatings [FP Type—1, Fig. 1(a)]
and air-spaced plain parallel surfaces, which are covered with
reflecting coatings on inner surfaces and with antireflecting
coatings on outer surfaces [FP Type—2, Fig. 1(b)].

Let us derive a significant property of transmitted and
reflected light that falls on the boundary of two optical medias.
We suppose that incident light has amplitude a and is transmit-
ted from media with refractive index n1 to media with refractive
index n2 (Fig. 2). The amplitude of the ray in the second media
becomes at , where t is the transmittance coefficient. The
amplitude of the reflected ray is ar , where r is the reflectance
coefficient. The time-reversal principle can be used, i.e., when
the direction of light propagation changes to the opposite, the
amplitudes of the field have to remain the same. Let us use r ′

as the reflection coefficient when the ray comes from media n2

and reflects from media with n1, and t ′ is the corresponding

Fig. 1. Types of Fabry–Perot resonators: (a) solid etalon (Type 1);
(b) air-spaced plain parallel surfaces (Type 2).

Fig. 2. (a) Scheme of directions of incident, reflected, and transmit-
ted field rays when light is irradiated on the boundary between medias
with different refractive indexes n1 and n2. (b) Scheme for comparison
of incident, reflected, and transmitted fields with rays in time-reversal
situation. The light propagates along one horizontal axis. Only for
visualization purposes, rays have angles to the boundary that separates
medias.

transmittance coefficient. Then, the time-reversal gives ray at
to reflect as atr ′ and to be transmitted as att ′ and ray ar to be
transmitted as ar t and reflected as ar 2 [see Fig. 2(b)]. Thus, we
have

a = att ′ + ar 2, (85)

0= ar t + atr ′, (86)

and

r 2
+ tt ′ = 1, (87)

t = t ′ =
√

1− r 2, (88)

r =−r ′. (89)

When both media are equal, then there is no reflected ray; thus,
r = r ′ = 0 and t = t ′ = 1.

The reflection coefficient of the mirror (or semitransparent
mirror) is assumed to be R , and it describes the proportion
of intensity that is reflected. For the amplitude, this becomes
r =
√

R and r ′ =−
√

R with r used when the ray reflects from
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media with a larger refractive index and r ′ used when the ray
reflects from media with a smaller refractive index. In the second
case, it can be described as a reflection with a coefficient r and a
phase shift π . The transmission coefficient of light intensity is
defined as T = 1− R . For amplitude transmission, it becomes
t = t ′ =

√
T.

Let us explore the Fabry–Perot resonator of Type 1 [Fig. 1(a)].
The resonator is filled with media with refractive coefficient n.
The resonance condition appears when the distance between
both mirrors is equal to positive natural number m of half
wavelength:

d =
(
λm

2n

)
·m, (90)

λm = 2nd ·
1

m
= nL ·

1

m
, (91)

which is equivalent to Eq. (4). In the same way, the equivalence
will be found for resonance positions in frequency scale and in
the FSR.

The left reflective layer (first mirror) of the Fabry–Perot
resonator (see Fig. 3) is characterized by the intensity reflection
coefficient R1, transmittance coefficient T1, corresponding
amplitude reflection coefficient r1 =

√
R1, and transmit-

tance coefficient t1 =
√

T1. The right reflective layer (second
mirror) is characterized similarly by coefficients R2, T2, r2,
and t2. The incident light with intensity I0 and field ampli-
tude U0 =

√
I0 travels from left to right and hits the left

side of the resonator. This field is transmitted through the
first mirror as U01 = t1U0. When it reaches the second mir-
ror, its phase is shifted by φ/2= (2πn/λ)d , thus obtaining
U02 = e iφ/2U01. Part of it is transmitted through the second
mirror UT0 = t2U02 = e iφ/2t1t2U0. The reflected part obtains
the phase shift by π , thus giving U03 =−r2U02. Further, we
find that U04 = e iφ/2U03, U11 =−r1U04, U12 = e iφ/2U11, and
UT1 = t2U12 = e i3φ/2r1r2t1t2U0. Additional steps show that
UT2 = t2U22 = e i5φ/2r 2

1 r 2
2 t2

1 t2
2 U0. Thus, the summary field

amplitude transmitted through the system becomes

UT =UT0 +UT1 +UT2 + · · ·

=U0t1t2e iφ/2
(

1+ e iφr1r2 +
(
e iφr1r2

)2
+ · · ·

)
(92)

=U0
t1t2e iφ/2

1− e iφr1r2
=U0

√
1− r 2

1

√
1− r 2

2 e iφ/2

1− e iφr1r2
. (93)

Fig. 3. Schematics of light field propagation in a Fabry–Perot
resonator. The light propagates along one horizontal axis. Only for
visualization purposes, rays are separated vertically.

When comparing these equations with Eq. (35), we find that
h = r1r2e iφ

= r1r2e i2πnd/λ and |h| = r1r2, with the exception
that the correction of the first amplitude is needed to become
U0t1t2e iφ/2.

An alternative way [35] to obtain Eq. (93) is as follows. We
use the summary amplitudes of fields propagating outside and
inside the resonator: incident field amplitude U0, reflected field
amplitude UR , transmitted field amplitude UT , field amplitude
in the resonator close to left mirror propagating in the right
direction U1, and the field amplitude in the resonator close to
left mirror propagating in the left direction U4. They have rela-
tions U1 = t1U0 − r1U4, UR = t1U4 + r1U0, U4 =−U1r2e iφ ,
and UT =U1t2e iφ/2 from which UT can be derived. This alter-
native provides a fast way to obtain the final equation but lacks
the clarity of its relation to the interference phenomena that is
highlighted in this paper.

Equation (93) can be transformed using operations similar to
those used for Eqs. (36) and (37); then, we obtain the transmit-
ted field intensity of the Fabry–Perot resonator [36]:

IT =
I0(1− r 2

1 )(1− r 2
2 )

(1− r1r2)
2
+ 4r1r2 sin2(φ/2)

. (94)

This can be rewritten as

IT =
IT max

1+ (2FT/π)
2 sin2(φ/2)

, (95)

with

IT max = I0
(1− r 2

1 )(1− r 2
2 )

(1− r1r2)
2 , (96)

FT =
π
√

r1r2

1− r1r2
, (97)

where IT max is the maximal transmitted intensity and FT is the
finesse of the transmitted signal.

Minimal value IT min of the transmitted intensity in Eq. (94)
is obtained when sin(φ/2)= 1:

IT min = I0
(1− r 2

1 )(1− r 2
2 )

(1+ r1r2)
2 =

IT max

1+ (2FT/π)
2 . (98)

Depth of the resonance intensity is

ITres = IT max − IT min (99)

= I0
4(1− r 2

1 )(1− r 2
2 )r1r2

(1− r 2
1 r 2

2 )
2 (100)

= K T1 IT max = K T2 I0, (101)

with coefficients

K T1 =
1

(π/ (2FT))
2
+ 1
=

4r1r2

(1+ r1r2)
2 , (102)

K T2 =
4(1− r 2

1 )(1− r 2
2 )r1r2

(1− r 2
1 r 2

2 )
2 . (103)
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According to Eq. (31), the signal width of transmitted intensity
becomes

1νT =
c

2ndFT
=

c
2πnd

1− r1r2
√

r1r2
, (104)

and the Q-factor is

QT =
2πndν

c

√
r1r2

1− r1r2
. (105)

If both mirrors are equal, r1 = r2 = r =
√

R ; then,

IT =
I0(1− r 2)

2

(1− r 2)
2
+ 4r 2 sin2

(
2πdn
λ

) (106)

=
I0(1− R)2

(1− R)2 + 4R sin2
(

2πdn
λ

) , (107)

IT max = I0, (108)

IT min = I0
(1− r 2)

2(
1+ r 2

)2 = I0
(1− R)2

(1+ R)2
, (109)

ITres = I0
4r 2(

1+ r 2
)2 = I0

4R

(1+ R)2
, (110)

1νT =
c

2πdn
1− r 2

r
=

c
2πdn

1− R
√

R
, (111)

QT =
2πdnν

c
r

1− r 2
=

2πdnν
c

√
R

1− R
, (112)

FT =
πr

1− r 2
=
π
√

R
1− R

, (113)

K T1 = K T2 =
4r 2(

1+ r 2
)2 =

4R

(1+ R)2
. (114)

Equation (107) looks similar to Eq. (47) with the exception that
the intensity has a multiplicator (1− R)2.

To obtain the sharp lines of the Fabry–Perot resonator, reflec-
tion coefficient R has to be close to 1. In this case,

1νT ≈
c

2πdn
(1− R), (115)

QT ≈
2πndν

c
1

1− R
, (116)

K T1 = K T2 ≈ 1. (117)

We can analyze a reflected light of the Fabry–Perot resonator.
The reflection from the first mirror gives UR0 = r1U0 (see
Fig. 3). Further signals are UR1 = t1U04 =−t2

1 r2e iφU0,
UR2 = t1U14 =−t2

1 r 2
2 r1e i2φU0 =UR1r1r2e iφ . Thus,

UR =UR0 +UR1 +UR2 + · · ·

=U0

(
r1 − t2

1 r2e iφ
(

1+ e iφr1r2 +
(
e iφr1r2

)2
+ · · ·

))
=U0

(
r1 −

t2
1 r2e iφ

1− e iφr1r2

)

=U0
r1 − r2e iφ

1− e iφr1r2
.

(118)

For reflected intensity, we obtain

IR = I0
(r1 − r2)

2
+ 4r1r2 sin2(φ/2)

(1− r1r2)
2
+ 4r1r2 sin2(φ/2)

. (119)

The resonance character of this equation can be seen after math-
ematical manipulations:

IR = I0

(
1−

(1− r 2
1 )(1− r 2

2 )

(1− r1r2)
2
+ 4r1r2 sin2(φ/2)

)
. (120)

We can find that

I0 = IT + IR (121)

as expected.
As in Eq. (120), phase dependence comes from the denomi-

nator, which is equivalent to the intensity of transmitted light in
Eq. (94); the finesse of reflected lightFR is the same as the finesse
of transmitted light in Eq. (97):

FR =FT . (122)

The maximal value IR max, minimal value IR min, and resonance
depth IRres of reflected intensity IR are the following:

IR max = I0
(r1 + r2)

2

(1+ r1r2)
2 , (123)

IR min = I0
(r1 − r2)

2

(1− r1r2)
2 , (124)

IRres = IR max − IR min, (125)

IRres = I0
4(1− r 2

1 )(1− r 2
2 )r1r2

(1− r 2
1 r 2

2 )
2 , (126)

= ITres = K R1 IR max = K R2 I0. (127)

Resonance depth coefficients of the reflected light are

K R1 =
4(1− r 2

1 )(1− r 2
2 )r1r2

(1− r1r2)
2(r1 + r2)

2 (128)

= 1−
(1+ r1r2)

2(r1 − r2)
2

(1− r1r2)
2(r1 + r2)

2 , (129)

K R2 =
4(1− r 2

1 )(1− r 2
2 )r1r2

(1− r 2
1 r 2

2 )
2 = K T2. (130)
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If both mirrors are equal (r1 = r2 = r =
√

R), then

IR = I0

(
1−

(1− r 2)
2

(1− r 2)
2
+ 4r 2 sin2(φ/2)

)
(131)

= I0

(
1−

(1− R)2

(1− R)2 + 4R sin2(φ/2)

)
(132)

IR max = I0
4r 2(

1+ r 2
)2 = I0

4R

(1+ R)2
, (133)

IR min = 0, (134)

IRres = I0
4r 2(

1+ r 2
)2 = I0

4R

(1+ R)2
= ITres, (135)

K R1 = 1, (136)

K R2 =
4r 2(

1+ r 2
)2 =

4R

(1+ R)2
= K T2. (137)

By inserting equation forφ, we obtain

IR = I0

(
1−

(1− R)2

(1− R)2 + 4R sin2 (2πdn/λ)

)
. (138)

Type 2 of the Fabry–Perot resonator [Fig. 1(b)] can be ana-
lyzed as well. We assume that the resonator is filled with media
with refractive index n, which is still smaller than the refractive
index of plain parallel surfaces of both sides of the resonator. A
similar ray scheme as in Fig. 3 can be used. Here, an additional
index “B” will be used to describe each amplitude. For exam-
ple, UB01 will be used as a substitution of U01 in Fig. 3, which
is used for the Type 1 Fabry–Perot resonator. It can be found
that UB01 =U01, UB02 =U02, UB03 =−U03, UT B0 =UT0,
UB04 =−U04, UB11 =U11, UB12 =U12, UT B1 =UT1, and
UT B2 =UT2; the summary transmission field UF B is equal
to UF . For reflected beams, UR B0 =−UR0, UR B1 =−UR1,
UR B2 =−UR2, and a summary reflected beam UR B =−UR ,
which has the opposite sign compared with Type 1. Intensity
distributions are equal for both types of Fabry–Perot resonators.

B. Circular Resonator Coupled to One Waveguide

Let us explore the situation when a circular whispering gallery
mode resonator with radius a is coupled to a waveguide (Fig. 4).
The field in this resonator can be modeled as reflected field UR

of the Fabry–Perot resonator when the second mirror is fully
reflective, R2 = 1 and R1 = R . In this case, the absorption
and dissipation of the field were not taken into account. Thus,
intensity distribution is obtained from Eq. (120) and becomes
I = I0, which means that all fields are transmitted through the
system.

We will describe a model of a waveguide coupled to a cir-
cular resonator, taking into account field decay in the system.
This system is called an “optical all-pass filter.” Coupling of the
waveguide and the resonator will be described by the reflection

Fig. 4. Light propagation in a circular resonator coupled to a wave-
guide.

coefficient r =
√

R , transmission coefficient t =
√

1− r 2, one
loop light path length in the resonator is L , giving the phase shift
per loopφ = 2πnL/λ, and the field decay rate e−β with

β = t0/(2τ)= nL/(2cτ), (139)

where t0 is the time the light travels one loop in the resonator, τ
is a decay rate of a signal in the resonator, n is a refractive index of
the resonator, and c is the speed of light.

Let us obtain the summary transmitted light amplitude UP 1

of the all-pass filter in Port 1 (Fig. 4). The light with ampli-
tude U0 =

√
I0 enters the waveguide from the left side. Part

of this amplitude UP 10 = r U0 is passing through the wave-
guide without entering the resonator. Another part U11 = tU0

enters the resonator. After travelling one loop in the resonator,
the amplitude of the wave becomes U12 =−e iφe−βU11.
This field reflects back into the resonator as U21 =−r U12.
Another part is transmitted to the waveguide as ampli-
tude UP 11 = tU12 =−e iφe−β t2U0. The field amplitude
U21 after travelling the next loop in the resonator turns into
U22 =−e iφe−βU21. This field is transmitted to the waveguide
as UP 12 = tU22 =−e i2φe−2βr t2U0 =UP 11 · (e iφe−βr ) and is
reflected into the resonator as U31 =−r U22. Further, U31 after
one loop in the resonator turns into U32 =−e iφe−βU31.
It is transmitted to the waveguide as UP 13 = tU32 =

e iφe−βr tU22 = e iφe−βr UP 12 =UP 11 · (e iφe−βr )2. In a
similar manner, the further series of reflected and transmitted
signals can be found. Finally, the summary transmitted light
amplitude UP 1 of the all-pass filter in Port 1 is obtained as a sum
of series:

UP 1 =UP 10 +UP 11 +UP 12 + · · · (140)

=U0r −U0t2e iφe−β

×

(
1+ e iφe−βr +

(
e iφe−βr

)2
+ · · ·

)
(141)

=U0

(
r −

(1− r 2)e iφe−β

1− e iφe−βr

)
(142)

=U0

(
r − e iφe−β

1− r e iφe−β

)
. (143)
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An alternative approach [37–39] obtains Eq. (143) using sum-
mary field amplitudes in a waveguide and resonator. Now, the
incident field amplitude is taken to be U0, summary transmitted
field amplitude UP , and field amplitudes U1 and U2 in the
resonator before and after the connection point with the wave-
guide, respectively. They hold relations UP = r U0 + i tU1,
U2 = i tU0 + r U1, and U1 =U2e iφe−β from which UP can be
derived. This alternative provides a fast way to obtain the final
equation but lacks the clarity of its relation to the interference
phenomena that are highlighted in this paper.

The transmitted field intensity in Port 1 is

IP 1 = |UP 1|
2
= I0

(
r − e−β

)2
+ 4r e−β sin2(φ/2)

(1− r e−β)2 + 4r e−β sin2(φ/2)
(144)

= I0

(
1−

(1− r 2)
(
1− e−2β

)
(1− r e−β)2 + 4r e−β sin2(φ/2)

)
. (145)

It can be rewritten as

IP 1 = I0 −
IP 11 max

1+ (2FP 1/π)
2 sin2(φ/2)

, (146)

IP 11 max = I0
(1− r 2)

(
1− e−2β

)
(1− r e−β)2

(147)

= I0

(
1−

(
r − e−β

1− r e−β

)2
)
, (148)

FP 1 =
π
√

r e−β/2

1− r e−β
, (149)

whereFP 1 is the finesse of the all-pass filter signal. According to
Eq. (32), the Q-factor of this signal is

Q P 1 =
πnLν

c

√
r e−β/2

1− r e−β
. (150)

The minimal value IP 1 min of the intensity IP 1 in Eq. (146) is
obtained when sin(φ/2)= 0:

IP 1 min = I0

(
r − e−β

1− r e−β

)2

. (151)

Alternatively, this condition corresponds to the largest intensity
accumulated in the resonator ring [40].

The maximal value IP 1 max of the intensity IP 1 in Eq. (146) is
obtained when sin2(φ/2)= 1:

IP 1 max = I0

(
r + e−β

1+ r e−β

)2

. (152)

The resonance depth IP 1res of the transmitted intensity IP 1 is

IP 1res = Imax − Imin (153)

= I0
4r e−β(1− r 2)

(
1− e−2β

)(
1− r 2e−2β

)2 (154)

= K1P 1 IP 1 max = K2P 1 I0, (155)

K1P 1 =
4r e−β(1− r 2)

(
1− e−2β

)
(1− r e−β)2(r + e−β)2

, (156)

K2P 1 =
4r e−β(1− r 2)

(
1− e−2β

)(
1− r 2e−2β

)2 . (157)

According to Eq. (31), the signal width of transmitted intensity
becomes

1νP 1 =
c

πnL
1− r e−β
√

r e−β/2
. (158)

If there is a slow decay, (β→ 0) and r 9 1, then the resonance
depth in Eq. (154) becomes

IP 1res ≈ I0
8r

1− r 2
β. (159)

If there is no decay (β = 0), then the resonance depth is 0, which
means that no resonance can be detected by intensity measure-
ments. This is an important conclusion, despite the fact that, in
this situation, the Q-factor has some value as derived from Eq.
(150):

Q P 10 =
πnLν

c

√
r

1− r
. (160)

Let us analyze the Q-factor in Eq. (150):

1

Q P 1
=

c
πnLν

1− r e−β
√

r e−β/2
(161)

=
c

πnLν
√

r

(
eβ/2 − r e−β/2

)
. (162)

Let us assume that decay is slow (β ≈ 0), expand Eq. (162)
in Taylor series around the value of β = 0, take the first two
elements of the series and use the definition in Eq. (139):

1

Q P 1
≈

c

πnLν
√

r
(1− r )+

c

2πnLν
√

r
(1+ r )β (163)

=
1

Q P 10
+

c
2πnLν

β
1+ r
√

r
(164)

=
1

Q P 10
+

c
4πντ

1+ r
√

r
. (165)

For Q P 10 to take the largest value, r has to be close to 1.
Therefore, now we can expand the second term in Eq. (165)
in Taylor series, respectively, to r and around its value 1 and take
first two elements. We obtain

c
4πντ

1+ r
√

r
=

c
4πντ

(
r−1/2

+
√

r
)
≈

c
2πντ

(166)

=
1

Q P 1τ
, (167)

where the decay is described as Q P 1τ—factor, according to
Eqs. (23) and (25).

Now the Q-factor of the optical all-pass filter can be described
as
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1

Q P 1
≈

1

Q P 10
+

1

Q P 1τ
. (168)

Here, we see that Q-factors of various processes in the system are
inversely summarized according to the rule of Eq. (29).

C. Circular Resonator Coupled to Two Waveguides

A circular resonator with two waveguides can be analyzed (see
Fig. 5). Such a resonator is called an “add-drop filter.” It can
be modeled as a Fabry–Perot resonator with various reflection
coefficients of mirrors. The decay of signal in the system can
be described in similarity with the description of the all-pass
filter. By comparing Eq. (118) when r2 = 1 and r1 = r with
Eq. (143), we see that decay could be introduced by substituting
e iφ with e iφe−β in Eq. (118). This is logical, as a phase shift φ
was obtained by light travelling one loop in the resonator; in this
path, the decay e−β was obtained. Now transmitted light field
amplitude UP 1 through Port 1 can be expressed from Eq. (118)
by substituting e iφ with e iφe−β :

UP 1 =U0
r1 − r2e iφe−β

1− r1r2e iφe−β
. (169)

Equation (169) can also be obtained from Eq. (118) if r2 is
substituted by r2e−β . Taking this into account, we can write the
intensity of Port 1 as Eq. (120), with r2 substituted by r2e−β and
R2 substituted by R2e−β/2, or as Eq. (145) with e−β substituted
by r2e−β and r substituted by r1:

IP 1 = |UP 1|
2

= I0

(
1−

(1− r 2
1 )
(
1− r 2

2 e−2β
)(

1− r1r2e−β
)2
+ 4r1r2e−β sin2(φ/2)

)
.

(170)

It can be rewritten as

IP 1 = I0 −
IP 11 max

1+ (2FT/π)
2 sin2(φ/2)

, (171)

IP 11 max = I0
(1− r 2

1 )
(
1− r 2

2 e−2β
)(

1− r1r2e−β
)2 , (172)

Fig. 5. Light propagation in circular resonator coupled to two wave-
guides.

FP 1 =
π
√

r1r2e−β/2

1− r1r2e−β
, (173)

where FP 1 is the finesse of the add-drop filter signal in Port 1.
According to Eq. (32), the Q-factor of this signal in Port 1 is

Q P 1 =
πnLν

c

√
r1r2e−β/2

1− r2r2e−β
. (174)

The minimal value IP 1 min of IP 1 is obtained when
sin(φ/2)= 0:

IP 1 min = I0

(
r1 − r2e−β

1− r1r2e−β

)2

. (175)

The maximal value IP 1 max of IP 1 is obtained when
sin2(φ/2)= 1:

IP 1 max = I0

(
r1 + r2e−β

1+ r1r2e−β

)2

. (176)

The resonance depth is

IP 1res = IP 1 max − IP 1 min (177)

= I0
4r1r2e−β(1− r 2

1 )
(
1− r 2

2 e−2β
)(

1− r 2
1 r 2

2 e−2β
)2 (178)

= K1P 1 IP 1 max = K2P 1 I0, (179)

K1P 1 =
4r1r2e−β(1− r 2

1 )
(
1− r 2

2 e−2β
)(

1− r1r2e−β
)2(

r1 + r2e−β
)2 , (180)

K2P 1 =
4r1r2e−β(1− r 2

1 )
(
1− r 2

2 e−2β
)(

1− r 2
1 r 2

2 e−2β
)2 . (181)

If there is a slow decay, (β→ 0) and r1, r2 9 1, then the
resonance depth in Eq. (178) becomes

Ires ≈ I0
4r1r2(1− r 2

1 )(1− r 2
2 )

(1− r 2
1 r 2

2 )
2 . (182)

In Port 2 (see Fig. 5), the output signal amplitude UP 2 can be
obtained from Eq. (93) taking into account that e iφ has to be
substituted by e iφe−β :

UP 2 =U0

√
1− r 2

1

√
1− r 2

2 e iφ/2e−β/2

1− r1r2e iφe−β
. (183)

The corresponding field intensity IP 2 = |UP 2|
2 in Port 2

becomes

IP 2 = I0
(1− r 2

1 )(1− r 2
2 )e
−β(

1− r1r2e−β
)2
+ 4r1r2e−β sin2(φ/2)

(184)

=
IP 2 max

1+ (2FP 2/π)
2 sin2(φ/2)

, (185)

where maximal value IP 2 max and the finesse FP 2 can be
derived as
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IP 2 max =
I0(1− r 2

1 )(1− r 2
2 )e
−β(

1− r1r2e−β
)2 , (186)

FP 2 =
π
√

r1r2e−β/2

1− r1r2e−β
=FP 1. (187)

The corresponding Q-factor of the signal in Port 2 is

Q P 2 = Q P 1 =
πnLν

c

√
r1r2e−β/2

1− r2r2e−β
. (188)

The minimal value IP 2 min of the intensity IP 2 in Eq. (184) is
obtained when sin(φ/2)= 1:

IP 2 min =
I0(1− r 2

1 )(1− r 2
2 )e
−β(

1+ r1r2e−β
)2 (189)

=
IP 2 max

1+ (2FP 2/π)
2 . (190)

The resonance depth IP 2res of the intensity IP 2 becomes

IP 2res = IP 2 max − IP 2 min (191)

= I0
4(1− r 2

1 )(1− r 2
2 )r1r2e−2β(

1− r 2
1 r 2

2 e−2β
)2 (192)

= K1P 2 IP 2 max = K2P 2 I0, (193)

with corresponding coefficients

K1P 2 =
1

(π/ (2FP 2))
2
+ 1
=

4r1r2e−β(
1+ r1r2e−β

)2 , (194)

K2P 2 =
4(1− r 2

1 )(1− r 2
2 )r1r2e−2β(

1− r 2
1 r 2

2 e−2β
)2 . (195)

Table 1. Summary of Main Equations That Describe Parameters of Resonances

Q-factor

Q = 2π storedenergy
energy loss per oscillation period Q = 2πντ = τω= 2πτ c

λ
=

ω

1ω
=

ν

1ν
=

λ

1λ
Q =F nLν

c =F L
(λ/n) =Fm

Interference of an infinite number of waves of progressively smaller amplitudes and equal phase difference

U1 =
√

I0,U2 = hU1,U3 = hU2 = h2U1, ... Ires = K 1 · Imax = K 2 · I0 Q ≈ πnLν
c

1
1−|h|

h = |h|e iφ , |h|< 1 K 1 =
4|h|

(1+|h|)2
K 1 ≈ 1− (π/(2F))2 ≈ 1

U =U1 +U2 +U3 + . . . K 2 =
4|h|

(1−|h|2)2
K 2 ≈ (F/π)2

I = |U |2 = I0
(1−|h|)2+4|h| sin2(φ/2)

1φ(FWHM)= 4arcsin 1−|h|
2
√
|h| close to resonancesφ − φres ≈ 0

Imax =
I0

(1−|h|)2
for slow decay (|h| ≈ 1) and

Imin =
I0

(1+|h|)2
1φ(FWHM)≈ 2 1−|h|

√
|h| I ≈ Imax

1+(F/π)2(φ−φres)
2

Ires = Imax − Imin =
4|h|I0

(1−|h|2)2
F ≈ π

√
|h|

1−|h| ≈
π

1−|h|

Intensity distribution of WGMR for slow decay (|h| ≈ 1)

φ = k · L = 2πn
λ
· L = 2πnL

c · ν I = I0(
1−e
−
πnLν

c Q
)2

+4e
−
πnLν

c Q sin2( πnL
c ν)

1λ≈ λ2

πnL
1−|h|
√
|h| ≈

λ2

2πcτ

|h| = e−β = e−t0/(2τ) = e−nL/(2cτ)
≈

I0

( πnLν
c Q )

2
+4 sin2( πnL

c ν)
Q ≈ πnLν

c

√
|h|

1−|h| ≈ 2πντ

= e−πnLν/(c Q)
≈ 1− πnLν/(c Q) 1ν ≈ c

πnL
1−|h|
√
|h| ≈

1
2πτ F ≈ π

√
|h|

1−|h| ≈
π

1−|h| ≈
2πcτ
nL

Fabry–Perot resonances

U1 =UT0 =
√

I0(1− r 2
1 )(1− r 2

2 )e
iφ/2 Transmitted signal 1νT =

c
2ndFT

=
c

2πnd
1−r1r2
√

r1r2

h = r1r2e iφ IT =
IT max

1+(2FT /π)
2 sin2(φ/2)

QT =
2πndν

c

√
r1r2

1−r1r2

φ = 4πnd/λ FT =
π
√

r1r2
1−r1r2

Reflected signal

|h| = r1r2 IT max = I0
(1−r 2

1 )(1−r 2
2 )

(1−r1r2)
2 IR = I0 − IT

IT min = I0
(1−r 2

1 )(1−r 2
2 )

(1+r1r2)
2

Circular resonator coupled to one waveguide

h = r e−βe iφ IP 1 = I0 −
IP 11 max

1+(2FP 1/π)
2 sin2(φ/2)

IP 1 min = I0(
r−e−β

1−r e−β )
2

φ = 2πnL/λ FP 1 =
π
√

r e−β/2

1−r e−β 1νP 1 =
c

πnL
1−r e−β
√

r e−β/2

|h| = r e−β IP 11 max = I0
(1−r 2)(1−e−2β )

(1−r e−β )2
Q P 1 =

πnLν
c

√
r e−β/2

1−r e−β

β = t0/(2τ)= nL/(2cτ) IP 1 max = I0(
r+e−β

1+r e−β )
2

Circular resonator coupled to two waveguides

IP 1 = I0 −
IP 11 max

1+(2FP 1/π)
2 sin2(φ/2)

FP 1 =
π
√

r1r2e−β/2

1−r1r2e−β IP 1 max = I0(
r1+r2e−β

1+r1r2e−β )
2

IP 11 max = I0
(1−r 2

1 )(1−r 2
2 e−2β )

(1−r1r2e−β )2
Q P 1 =

πnLν
c

√
r1r2e−β/2

1−r2r2e−β IP 1 min = I0(
r1−r2e−β

1−r1r2e−β )
2
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Within our model, the light intensity in Port 3 is IP 3 = 0, as no
light travels in the opposite direction to the incident light.

The dissipated intensity ID of the add-drop filter can be
obtained as

ID = I0 − (IP 1 + IP 2) (196)

= I0
(1− r 2

1 )
(
1+ r 2

2 e−β
) (

1− e−β
)(

1− r1r2e−β
)2
+ 4r1r2e−β sin2(φ/2)

. (197)

When there is no decay, (β = 0), the dissipated field vanishes
ID = 0, as expected from Eq. (121).

When the coupling of the resonator to both waveguides
is equal, which means r1 = r2 = r , then the characteristic
parameters of the field in Port 1 become

IP 1 = I0

(
1−

(1− r 2)
(
1− r 2e−2β

)(
1− r 2e−β

)2
+ 4r 2e−β sin2(φ/2)

)
,

(198)

FP 1 =
πr e−β/2

1− r 2e−β
, (199)

Q P 1 =
πnLν

c
r e−β/2

1− r 2e−β
. (200)

4. CONCLUSION

Main derived formulas as a result of this paper are summarized
in Table 1. They are ordered in a way that asserts the similarity of
Fabry–Perot and whispering gallery mode resonances with those
of an interference of an infinite number of waves of progressively
smaller amplitudes and equal phase differences.

We presented the classical analytical description of reso-
nances in Fabry–Perot and whispering gallery mode resonators.
Basic terms such as wavelength in media, resonance condition
for wavelength and frequency, including an integral form of
resonance condition in case of nonhomogenous media, free
spectral range, Q-factor, summation principle of Q-factors of
various processes, and finesse were introduced. Interference of
an infinite number of waves of progressively smaller amplitudes
and equal phase differences were described, its intensity distri-
bution, maximal intensity, minimal intensity, resonance depth,
resonance condition, resonance width, Q-factor, and finesse
were derived. The case of a small decay was analyzed.

Fabry–Perot resonators with nonequal and equal reflection
coefficients of their mirrors were described. The amplitudes of
fields in a resonator, summary amplitude of transmitted and
reflected fields, intensity distribution, maximal and minimal
intensities, resonance depth, resonance width, finesse, Q-factor,
and corresponding values for slow decay were analyzed.

Circular resonators coupled to one and two waveguides
were described. Field decay in the resonator was introduced.
Characteristics of resonances were derived and presented in
the form that allows them to compare with Fabry–Perot reso-
nances and general case of the interference of an infinite number
of waves of progressively smaller amplitudes and equal phase
differences.

A description of the resonances provided in this paper is a
useful tool for reference when forming an in-depth understand-
ing of optical resonances, analyzing experimental data, and
searching for ways to optimize resonator systems.

Summarizing our paper represents a detailed description of
the theoretical approach describing features of the resonators for
general introduction in the topics of optical resonances.
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